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ABSTRACT

In the United States, 1 in 8 women will be diagnosed with breast cancer in her lifetime. Along with genetics, the environment
contributes to disease development, but what these exact environmental factors are remains unknown. We have previously
shown that breast tissue is not sterile but contains a diverse population of bacteria. We thus believe that the host’s local micro-
biome could be modulating the risk of breast cancer development. Using 16S rRNA amplicon sequencing, we show that bacterial
profiles differ between normal adjacent tissue from women with breast cancer and tissue from healthy controls. Women with
breast cancer had higher relative abundances of Bacillus, Enterobacteriaceae and Staphylococcus. Escherichia coli (a member of
the Enterobacteriaceae family) and Staphylococcus epidermidis, isolated from breast cancer patients, were shown to induce DNA
double-stranded breaks in HeLa cells using the histone-2AX (H2AX) phosphorylation (�-H2AX) assay. We also found that mi-
crobial profiles are similar between normal adjacent tissue and tissue sampled directly from the tumor. This study raises impor-
tant questions as to what role the breast microbiome plays in disease development or progression and how we can manipulate
this for possible therapeutics or prevention.

IMPORTANCE

This study shows that different bacterial profiles in breast tissue exist between healthy women and those with breast cancer.
Higher relative abundances of bacteria that had the ability to cause DNA damage in vitro were detected in breast cancer patients,
as was a decrease in some lactic acid bacteria, known for their beneficial health effects, including anticarcinogenic properties.
This study raises important questions as to the role of the mammary microbiome in modulating the risk of breast cancer devel-
opment.

Bacteria inhabit numerous body sites, and this collective micro-
biota plays an integral role in human development. Changes

in the composition of one’s microbiota at various body sites may
promote disease progression, as individuals with periodontitis (1,
2), inflammatory bowel disease (3), psoriasis (4), asthma (5), di-
abetes (6), bacterial vaginosis (7), and colorectal cancer (8) have
different bacterial communities than healthy individuals. While it
is still unclear whether these microbial differences are a conse-
quence or a cause of the disease, there is evidence in favor of the
latter, as healthy animals transplanted with feces from those with
obesity, colitis, or colorectal cancer then go on to develop disease
(9–11).

In the United States, 1 in 8 women will be diagnosed with
breast cancer in her lifetime. While the etiology of breast cancer is
still unknown, it is believed to be due to a combination of both
genetic and environmental factors. Support for environmental
factors comes from migration studies showing an increased inci-
dence of breast cancer among migrants and their descendants af-
ter they move from a region of low breast cancer risk to a region of
high risk (12, 13). Bacterial communities within the host could be
one such environmental factor which has not been considered to
date.

We have previously shown that a breast tissue microbiome
exists in a cohort of Canadian and Irish women (14). To deter-
mine whether this local microbiome could have a role in modu-
lating the risk of breast cancer development, we examined the
breast microbiota of 70 women who had either breast cancer (nor-

mal adjacent tissue collected) or benign tumors (normal adjacent
tissue collected) or were disease free. Bacteria isolated from cancer
patients were characterized and examined for their abilities to
induce DNA damage.

MATERIALS AND METHODS
Microbiome analysis. (i) Tissue collection and processing. Fresh breast
tissue was collected from 71 women (ages 19 to 90 years) undergoing
breast surgery at St. Joseph’s Hospital in London, Ontario, Canada. Eth-
ical approval was obtained from the Western Research Ethics Board and
Lawson Health Research Institute, London, Ontario, Canada. Subjects
provided written consent for sample collection and subsequent analyses.
Fifty-eight women underwent lumpectomies or mastectomies for either
benign (n � 13) or cancerous (n � 45) tumors, and 23 were free of disease
and underwent either breast reductions or enhancements. For those
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women with tumors, the tissue obtained for analysis was collected outside
the marginal zone, approximately 5 cm away from the tumor. None of the
subjects had been on antibiotics for at least 3 months prior to collection.

After excision, fresh tissue was immediately placed in a sterile vial on
ice and homogenized within 30 min of collection. As an environmental
control, a tube filled with 1 ml of sterile phosphate-buffered saline (PBS)
was left open for the duration of the surgical procedure and then pro-
cessed in parallel with the tissue samples. As an added control, a skin swab
of the disinfected breast area was collected prior to surgery. The swab was
placed in 1 ml of sterile PBS and then vortexed at full speed for 5 min to
pellet the contents of the swab. The swab was then removed, and the liquid
was stored at �80°C until DNA was extracted.

Tissue samples were homogenized in sterile PBS using a PolyTron
2100 homogenizer at 28,000 rpm. The amount of PBS added was based on
the weight of the tissue in order to obtain a final concentration of 0.4 g/ml.
The homogenate was then stored at �80°C until DNA was extracted.

(ii) DNA isolation. After tissue homogenates in sealed containers were
thawed on ice, 400 �l (equivalent to 160 mg of tissue) was added to tubes
containing 1.2 ml of ASL lysis buffer (QIAamp DNA stool kit; Qiagen)
and 400 mg of 0.1-mm-diameter zirconium glass beads (BioSpec Prod-
ucts). Then, 800 �l of the PBS control and 800 �l of the skin swab control
were also added to tubes containing ASL buffer and beads. Mechanical
and chemical lyses were performed on all samples by bead beating at 4,800
rpm for 60 s at room temperature and then 60 s on ice (repeated twice)
(Mini-beadbeater-1; BioSpec Products), after which the suspension was
incubated at 95°C for 5 min. Subsequent procedures were performed
using the Qiagen QIAamp DNA stool kit according to the manufacturer’s
protocol, with the exception of the last step, in which the column was
eluted with 120 �l of elution buffer. DNA was stored at �20°C until
further use.

(iii) V6 16S rRNA gene sequencing: PCR amplification. The genomic
DNA isolated from the clinical samples was amplified using barcoded
primers that amplified the V6 hypervariable region of the 16S rRNA gene
(70 bp long): V6-forward, 5=ACACTCTTTCCCTACACGACGCTCTTC
CGATCTnnnn(8)CWACGCGARGAACCTTACC3=; and V6-reverse,
5=CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTnnnn(8)
ACRACACGAGCTGACGAC3=.

In the primers, nnnn indicates 4 randomly incorporated nucleotides,
and 8 represents a specific sample barcode sequence. The PCR was carried
out in a 42-�l reaction mixture containing 2 �l of DNA template (or
nuclease-free water as a negative control), 0.15 �g/�l of bovine serum
albumin, 20 �l of 2� GoTaq hot-start colorless master mix (Promega),
and 10 �l of each primer (initial concentration, 3.2 pmol/�l). Thermal
cycling was carried out in an Eppendorf Mastercyler under the following
conditions: initial denaturation at 95°C for 2 min followed by 25 cycles of
95°C for 1 min, 55°C for 1 min, and 72°C for 1 min. After amplification,
the DNA concentration was measured with the Qubit 2.0 fluorometer
(Invitrogen) using the broad-range assay. Equimolar amounts of each
PCR product were then pooled and purified using the QIAquick PCR
purification kit (Qiagen). The pooled PCR purified sample was then
paired-end sequenced on the Illumina Mi-Seq platform using a 150 cycle
kit with a paired-end 80-bp run at the London Regional Genomics Center,
London, Ontario, Canada, following standard operating procedures.

(iv) Sequence processing and taxonomic assignment. Custom Perl
and Bash scripts were used to demultiplex the reads and assign barcoded
reads to individual samples. Multiple layers of filtering were employed: (i)
paired-end sequences were overlapped with Pandaseq, allowing 0 mis-
matches in the overlapped reads; (ii) reads were kept if the sequence in-
cluded a perfect match to the V6 16S rRNA gene primers; (iii) barcodes
were 8-mers with an edit distance of �4, and reads were kept if the se-
quence were a perfect match to the barcode; (iv) reads were clustered by
97% identity into operational taxonomic units (OTUs) using the Uclust
algorithm of USEARCH version 7 (15), which has a de novo chimera filter
built into it; and (v) all singleton OTUs were discarded, and those that
represented �2% of the reads in at least one sample were kept (a filter for

PCR and environmental controls and the skin swabs). Taxonomic assign-
ments for each OTU were made by extracting the best hits from the SILVA
database (16) and then manually verified using the Ribosomal Database
Project (RDP) SeqMatch tool (http://rdp.cme.msu.edu/) and using
BLAST against the Greengenes database (http://greengenes.lbl.gov) Tax-
onomy was assigned based on hits with the highest percentage identities
and coverage. If multiple hits fulfilled this criterion, classification was
reassigned to a higher common taxonomy.

(v) Data analysis. Principal-coordinate analysis (PCoA) plots of
weighted UniFrac distances (17) were generated in QIIME (18) by using a
tree of OTU sequences built with FASTTREE (19) based on an OTU
sequence alignment made with MUSCLE (20). Permutational multivari-
ate ANOVA (PERMANOVA) was used to test for statistical significance
between groups using 10,000 permutations (QIIME package).

Microbiome data are compositional in nature (i.e., proportional dis-
tributions that are not independent of each other) and thus have several
limitations (21). A simple example is as follows: If a sample has two or-
ganisms, A (50%) and B (50%), and, after antibiotic treatment, organism
A is completely killed, the proportion of B in that sample will now be
100% even if its actual abundance has not changed. Transforming the
data, using centered log ratios (CLR) alleviates the constraints inherent
with compositional data (22) by allowing for subcomposition coherence,
linear sample independence, and normalization of read counts. K-means
clustering of the data was performed using Euclidean distances on CLR-
transformed data with a uniform prior of 0.5 added to each value before
transformation.

The ALDEx R package version 2 (21) was used to compare the relative
abundances of genera. Values reported in the manuscript represent the
expected values of 128 Dirichlet Monte-Carlo instances of CLR-trans-
formed data. A value of zero indicated that organism abundance was equal
to the geometric mean abundance. Thus, organisms more abundant than
the mean would have positive values, and those less abundant than the
mean would have negative values. Base 2 was used for the logarithm so
that differences between values would represent fold changes. Significance
was based on the Benjamini-Hochberg corrected P value of the Wilcoxon
rank test (significance threshold P � 0.1).

The microbiome regression-based kernel association test (Mirkat)
(23) was performed in R using the Mirkat package. Differences in micro-
biota profiles were tested using a kernel metric constructed from weighted
UniFrac, unweighted UniFrac, and GUniFrac (24) distances and the Bray-
Curtis dissimilarity metric. Optimal Mirkat allows for the simultaneous
examination of multiple distance/dissimilarity metrics, alleviating the
problem of choosing the best one, and was performed on the aforemen-
tioned metrics. The P values generated were the mean of 128 Dirichlet
Monte-Carlo instances.

The R script of SourceTracker (version 0.9.1) was used to assess con-
tamination of the tissue microbiota. Tissue samples were designated sink
and PBS controls, as sources.

Barplots, boxplots, K-means clusterplots, and dendrograms were all
generated in R (http://www.R-project.org/).

Full details regarding Irish tissue sample collection, patient demo-
graphics, DNA extraction protocols, and the steps followed to generate
the OTU table used for the analysis in Fig. S4 in the supplemental material
can be found in our previous publications (14, 25).

DNA damage assay. (i) Bacterial strains. Isolates were obtained by
plating 100 �l of tissue homogenate (normal adjacent tissue and
healthy tissue from Canadian subjects) on Columbia blood agar, Mac-
Conkey, and beef heart infusion (BHI) agar plates and incubating both
aerobically or anaerobically at 37°C. DNA from single colonies was ex-
tracted using the InstaGene matrix (Bio-Rad) and then amplified using
the eubacterial primers pA/pH, which amplify the complete 16S rRNA
gene: pA, 5=AGAGTTTGATCCTGGCTCAG3=, and pH, 5=AAGGAGGT
GATCCAGCCGCA3=.

The PCR was carried out in 50 �l of a reaction mixture containing 10
�l of the DNA template (or nuclease-free water as a negative control), 1.5
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mM MgCl2, 1.0 �M each primer, 0.2 mM dNTP, 5 �l of 10� PCR buffer
(Invitrogen), and 0.05 Taq polymerase (Invitrogen). Thermal cycling was
carried out in an Eppendorf Mastercyler under the following conditions:
initial denaturation at 95°C for 2 min, followed by 30 cycles of 94°C for 30
s, 55°C for 30 s, and 72°C for 1 min. A final elongation step was performed
at 72°C for 10 min. Then, 40 �l of the PCR mixture was purified using the
QIAquick PCR purification kit (Qiagen), and the purified products were
sent for Sanger sequencing to the London Regional Genomics Centre,
London, Ontario, Canada. Sequences were analyzed using the GenBank
16S rRNA sequences database and the Greengenes database. Taxonomy
was assigned based on the highest maximum score. Because the 16S rRNA
gene does not differentiate members of the Enterobacteriaceae family very
well, to confirm that our isolates were indeed Escherichia coli, we utilized
the API 20E strip to differentiate species that are part of the this family. E.
coli strain IHE3034 was kindly provided by Jean Philippe Nougayrède
(INRA, Toulouse, France).

(ii) Infection assay. HeLa cells were maintained and passaged in Dul-
becco modified Eagle medium (DMEM)/glutamax media (Invitrogen)
supplemented with 10% fetal bovine serum (FBS) (Invitrogen). On the
day of the experiment, a 24-well plate containing sterile coverslips was
seeded with 0.5 ml of 1 � 105 cells/ml, resulting in 5 � 104 HeLa cells/well.
The plates were then incubated at 37°C with 5% CO2 for 24 h, after which
the medium was removed and the wells were washed with sterile PBS.
HeLa cells (2 wells for each organism) were then infected at a multiplicity
of infection (MOI) of 100 for 4 h with either Staphylococcus epidermidis
(subject 31), Micrococcus luteus (subject 8), Micrococcus sp. (subject 8), E.
coli (subject 41 [isolates H and E], subject 34 [strain IHE3034]), Propi-
onibacterium acnes (subject 20), and Propionibacterium granulosum (sub-
ject 20) or at an MOI of 1 for 2 h with Bacillus cereus (subjects 34 and 6). An
MOI of 1 (for 2 h) instead of 100 (for 4 h), as used for the other strains, was
used for B. cereus, because this was the highest MOI and the longest incu-
bation that the HeLa cells could tolerate without dying. The bacterial
cultures for infection were prepared by inoculating them with 5 ml of BHI
with 1 colony and incubating them aerobically at 37°C for 15 h, with the
exception of Propionibacterium, which was incubated anaerobically for 72
h. Bacterial cultures were then spun down at 3,500 � g for 10 min, washed,
and resuspended in PBS. Bacterial cells were diluted to the appropriate
concentration in DMEM containing 10% FBS and 25 mM HEPES. Also,
40 �M etoposide (Sigma) was used as a technical positive control. The pH
was checked at the end of the experiment to ensure consistency between
wells.

(iii) Immunofluorescence. After infection, medium was removed and
HeLa cells were washed 3 times with sterile PBS. Cells were then fixed and
permeabilized for 12 min at room temperature (RT) with a �20°C solu-
tion of 95% methanol and 5% acetic acid. Cells were then blocked for an
hour with 0.3% Triton X-100 –5% goat serum. After the cells were
blocked, a 1/200 dilution of the primary antibody (rabbit anti-phospho-
histone-2AX [H2AX] MAb; Cell Signaling Technologies) was added and
incubated overnight at 4°C. After the cells were washed, a 1/1,000 dilution
of the secondary antibody (goat anti-rabbit IgG, Alexa Fluor 647 conju-
gate; Cell Signaling Technologies) was added and incubated at RT for 30
min. Cells were then counterstained with 1 �g/ml of 4=,6-diamidino-2-
phenylindole (DAPI) (Life Technologies) for 1 min. Coverslips were
mounted on microscope slides containing a drop of ProLong gold anti-
fade mountant (Life Technologies). The experiments were performed 3
times.

Images were captured using the Nikon eclipse TE2000-S digital micro-
scope. Eight fields of view for each replicate were recorded, for a total of 16
fields of view for each condition. Using ImageJ software (version 1.48a),
the mean fluorescent intensity (MFI) of each phosphorylated-H2AX (�-
H2AX)-stained cell was measured from the digital images. The digital
images were also used to determine the percentage of total cells stained
positive for �-H2AX. This was calculated by dividing the number of red
cells (i.e., �-H2AX positive) by the number of blue cells (i.e., DAPI
stained) and multiplying by 100.

Statistics for DNA damage assay. Bar graphs of the means and stan-
dard deviations from the 3 experiments were plotted using Prism (version
5.0a). Significance (P � 0.05) was tested by a 1-way analysis of variance
followed by the Dunnet’s post hoc test using Prism (version 5.0a).

Accession number(s). The raw sequencing reads generated in this
study have been deposited in the NCBI Sequence Read Archive (SRA)
database under accession number SRP076038.

RESULTS
Microbiota analysis. 16S rRNA amplicon sequencing of the V6
hypervariable region was performed on 70 tissue samples and 38
environmental controls. A full summary of patient demographics
can be found in Table S1 in the supplemental material. To assess
the contribution of environmental contamination toward the
overall tissue microbiota, we utilized the contamination predictor
tool SourceTracker, which compared the microbial population in
the tissue samples to that of the phosphate-buffered saline (PBS)
environmental controls that were processed alongside the tissue
samples. Figure S1 in the supplemental material shows that, while
there is contamination present, it makes up only a small propor-
tion (average, 10%) of the overall microbial community in breast
tissue. A dendrogram of Euclidean distances of the centered log
ratio (CLR)-transformed data set (22) was then constructed to
visualize which tissue samples were similar to the PBS controls
and to skin swabs collected from the disinfected breast area prior
to surgery. As seen in Fig. S2 in the supplemental material, skin
swabs, PBS controls, and the no-template PCR control (NTC)
formed a single cluster, which was separate from most of the tissue
samples, indicating distinct microbial profiles. To ensure strin-
gent quality control, we removed those tissue samples (n � 27)
that were part of the PBS/skin/NTC group from further analysis
(see Table S2 in the supplemental material). In addition, OTUs
present at over 2% abundance in the NTC and PBS controls (n �
11) were also removed from further analysis (see Table S2 in the
supplemental material). 16S rRNA gene sequencing data of the
remaining samples and OTUs showed a diverse population of bac-
teria consisting of 61 OTUs and 28 genera (Fig. 1A) dominated by
the phyla Proteobacteria and Firmicutes (Fig. 1B).

A comparison of normal adjacent tissue from women with
breast cancer and tissue from healthy women showed distinctly
different bacterial profiles on weighted UniFrac PCoA plots (Fig.
2A). The PERMANOVA performed on the data set showed that
the observed differences were statistically significant (10,000 per-
mutations; pseudo F statistic, 14.4; P � 0.01). Unsupervised K-
means clustering of the CLR-transformed data set indicated two
clusters, and the PCoA plot in Fig. 2B shows clear separation be-
tween the healthy and cancer groups. Differences between the
groups were further confirmed using the microbiome regression-
based kernel association test (Mirkat) (Table 1).

ALDEx2, which allows for the direct comparison of bacterial
taxa between groups showed significantly higher compositional
abundances of Prevotella, Lactococcus, Streptococcus, Corynebacte-
rium, and Micrococcus in healthy patients and Bacillus, Staphylo-
coccus, Enterobacteriaceae (unclassified), Comamondaceae (un-
classified), and Bacteroidetes (unclassified) in cancer patients (Fig.
3; see also Table S3 in the supplemental material).

To assess whether bacteria surrounding the tumor microenvi-
ronment might be associated with the severity of cancer, we com-
pared bacterial profiles in normal adjacent tissue from women
with various stages of breast cancer. No differences were found
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FIG 1 Breast tissue microbiota in 43 Canadian women identified by 16S rRNA amplicon sequencing. (A) The relative abundances of bacterial genera in different
breast tissue samples were visualized by bar plots. Each bar represents a subject and each colored box, a bacterial taxon. The height of a colored box represents
the relative abundance of that organism within the sample. Taxa present at less than 2% abundance in a given sample are displayed in the remaining fraction
section at the top of the graph (gray boxes). As shown by the bar plots, a variety of bacteria was detected in breast tissue. The legend is read from bottom to top,
with the bottom organism on the legend corresponding to the bottom colored box on the bar plot. (B) Box plots of the six phyla identified in breast tissue. The
box signifies the 75% (upper) and 25% (lower) quartiles and thus shows where 50% of the samples lie. The black line inside the box represents the median. The
whiskers represent the lowest datum still within 1.5 interquartile range (IQR) of the lower quartile and the highest datum still within 1.5 IQR of the upper quartile.
Outliers are shown with open circles.
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based on invasiveness or stage (see Fig. S3 in the supplemental
material). However, normal adjacent tissue from women with be-
nign tumors had profiles that were more similar to those for nor-
mal adjacent tissue of women with cancerous tumors than for
tissue from healthy subjects (see Table S4 in the supplemental
material). It is important to note that no differences were observed

between tissue samples collected by different surgeons and/or
from different surgical rooms.

We have previously published two reports showing which bac-
teria are present in tumor tissue and normal adjacent tissue of
women from Ireland (14, 25). In this report, we now show, using
weighted UniFrac distances, that bacterial communities do not
differ between tumor tissue and normal adjacent tissue, either at
the population level (see Fig. S4A in the supplemental material) or
within an individual (see Fig. S4B in the supplemental material).
Thus, when suitably collected tumor tissue for microbiome anal-
ysis is not available, normal adjacent tissue may be a practical
alternative.

Assessment of DNA damage ability of breast tissue isolates.
E. coli strains belonging to the B2 phylotype harbor the pks patho-
genicity island, which encodes machinery for the production of
the genotoxin colibactin. These pks-positive strains have been im-
plicated in colon cancer (26, 27) via their ability to induce DNA
double-stranded breaks and chromosomal instability (28, 29). As
shown in Fig. 3, the family Enterobacteriaceae, of which E. coli is a
member, was relatively more abundant in cancer patients than in
healthy controls. For this reason, we wanted to examine whether
E. coli, cultured from normal adjacent tissue of breast cancer pa-
tients, had the ability to induce DNA double-stranded breaks.
Cellular levels of histone-2AX (H2AX) phosphorylation (�-
H2AX), a surrogate marker of double-strand breaks, were mea-
sured in HeLa cells after incubation with various E. coli tissue
isolates. E. coli IHE3034, which contains the pks pathogenicity
island and induces double-strand breaks (28), was used for com-
parison.

HeLa cells exposed to E. coli tissue isolates had significantly
higher levels of �-H2AX than did untreated cells, as measured by
MFI and percentage of cells that stained positive for �-H2AX, with
levels equivalent to those induced by E. coli IHE3034 (Fig. 4).
Additional isolates from breast cancer patients were also exam-
ined for the ability to induce DNA damage. Bacillus and Staphy-
lococcus were tested, as these genera were more abundant in cancer
patients; Micrococcus was tested, as this genus was higher in
healthy individuals; and Propionibacterium was tested, but there
were no differences in relative abundances between cancer pa-
tients and healthy controls. Bacillus, Microccoccus, and Propi-
onibacterium isolates did not induce double-strand breaks,
whereas Staphylococcus did (see Fig. S5 in the supplemental mate-
rial).

�-H2AX foci can occur and be resolved very quickly in re-
sponse to DNA damage; thus, a time course was performed, with
Bacillus-treated cells analyzed every 15 min over a 2-h period. No
statistically significant differences at any time point were observed
between treated and untreated cells (data not shown).

FIG 2 Comparison of bacterial profiles between breast cancer patients and
healthy controls. Weighted UniFrac principal-coordinate (PCoA) plot (A) and
K-means clusterplot of centered log ratio-transformed data (B). Each breast
tissue sample, represented by a colored point, was plotted on a 3-dimensional,
3-axis plane representing 79% of the variation observed between all samples
(A) or 44.85% of the variation on a 2-axis plane (B). Samples (points) that
cluster together are similar in biota composition and abundance. The distinct
separation between the two groups indicates that bacterial profiles differ be-
tween women with and without cancer. The PERMANOVA performed on the
weighted UniFrac distances showed that the observed differences were statis-
tically significant (10,000 permutations; pseudo F statistic, 14.4; P � 0.01).

TABLE 1 Summary of P valuesa generated by Mirkat

P value Bray-Curtis metric Weighted UniFrac distance Unweighted UniFrac distance GUniFrac distance (	 � 0.5)

Minimum 4.58E�5 2.64E�6 4.12E�6 2.64E� 6
Maximum 0.000129826 1.04E�5 0.004191322 1.15E�5
Average 7.87E�5 4.52E�6 0.000395004 5.33E�6
Median 7.70E�5 4.24E�6 2.05E�4 4.87E�6
a P values displayed represent the minimum, maximum, average, and median values generated from 128 Dirichlet Monte-Carlo instances for each of the 4 distance-based metrics
shown. The optimal P value obtained when the 4 distance-based metrics were analyzed simultaneously was zero.
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DISCUSSION

This study has shown that different bacterial profiles exist in nor-
mal adjacent breast tissue from women with breast cancer and
normal tissue from healthy controls. In colorectal cancer (CRC)
and oral squamous cell carcinoma (OSCC), bacterial profiles in
the stool and saliva, respectively, also differ between healthy and
diseased patients (30–32), with evidence suggesting that changes
in this community composition and function may be driving can-
cer progression at these sites (33, 34). This raises the possibility
that the differences observed in the breast also play a role in breast
cancer progression. We acknowledge that the average ages dif-
fered between the two groups, with the cancer cohort having a
mean and median age of 62 years and the healthy cohort having a
mean age of 49 years and a median age of 53 years. Considering
that the mean and median ages of the benign group were 38 years
and 36 years, respectively, and that the microbial profiles did not
differ between the benign and cancer groups, we do not believe
that the differences observed between the healthy and the cancer
groups were due to difference in ages. Menopausal status does not
appear to be a factor either, since no differences in microbial pro-
files were observed between pre- and postmenopausal women in
the healthy cohort and pre- and postmenopausal women with
either benign or cancerous tumors.

Enterobacteriaceae and Staphylococcus are two taxa found in
higher abundances in breast cancer patients than in healthy con-
trols. Examination of three E. coli isolates (a member of the Enter-
obacteriaceae family) and one Staphylococcus epidermidis isolate
cultured from normal adjacent tissue of breast cancer patients
displayed the ability to induce DNA double-stranded breaks by all
isolates. Double-strand breaks are the most detrimental type of
DNA damage and are caused by genotoxins, reactive oxygen spe-
cies, and ionizing radiation (35). Nonhomologous end joining,

the mechanism by which double-strand breaks are repaired, is
extremely error prone, often resulting in missing bases at the site
of damage (35). Accumulation of these misrepairs within the cell
over time leads to genomic instability and, eventually, cancer (36).
Double-strand breaks caused by bacteria, such as Helicobacter py-
lori and certain strains of E. coli, have been shown to induce chro-
mosomal instability with prolonged exposure (29, 37). While the
same mechanisms may be involved in the in vitro assay described
here (or, indeed, in breast tissue transformation), further tests
would need to be done to verify whether chromosomal abnormal-
ities do occur subsequent to the DNA damage induced by these
breast isolates. In support of this hypothesis, total cell numbers
were consistent between all treated and untreated groups, suggest-
ing no induction of apoptosis. It is important to note that bacte-
rially induced DNA damage may not be sufficient in itself to pro-
mote breast cancer development unless it occurs in a genetically
susceptible host. All genetic and 3% to 30% of sporadic cancer
cases have mutations in DNA repair or DNA checkpoint machin-
ery (38). Thus, women who have impaired DNA repair or DNA
checkpoints may be more susceptible to bacterially induced DNA
damage and may be at a higher risk of developing breast cancer
than women without these mutations, even if they have the same
detrimental microbes in their mammary glands.

Bacillus was elevated in breast cancer patients compared with
healthy controls, confirming our previous findings (14). While
Bacillus did not induce double-strand breaks like E. coli and
S. epidermidis, it may have other procarcinogenic effects. One
study has shown that a B. cereus strain, isolated from gingival
plaque, metabolizes the hormone progesterone into 5-alpha-
pregnane-3,20-dione (5	P) (39). 5	P is higher in breast tumors
than in healthy breast tissue (40) and is believed to promote tumor
development by stimulating cell proliferation (40, 41). While our

FIG 3 Differences in relative abundances of taxa exist between healthy and cancer patients. The top panels show the bacteria that had statistically significant
higher relative abundances in healthy patients than in those with cancer (i.e., normal adjacent tissue), and the bottom panels shows the bacteria that had
statistically significant higher relative abundances in cancer patients than in healthy controls. The box in each graph signifies the 75% (upper) and 25% (lower)
quartiles and thus shows where 50% of the samples lie. The black line inside the box represents the median. The whiskers represent the lowest datum still within
1.5 interquartile range (IQR) of the lower quartile and the highest datum still within 1.5 IQR of the upper quartile. Outliers are shown with open circles.
Significance was based on the Benjamini-Hochberg corrected P value of the Wilcoxon rank test (significance threshold, P � 0.1).
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FIG 4 DNA damage ability of E. coli isolated from breast cancer patients. E. coli was isolated from normal adjacent tissue of 2 patients with breast cancer and
tested for its ability to induce DNA double-stranded breaks. E. coli (isolates H and E) from subject 41, isolate L from subject 34, and strain IHE3034 were
incubated with HeLa cells at an MOI of 100 for 4 h and then stained for �-H2AX and DAPI. Etoposide, a chemical that induces DNA double-stranded breaks in
eukaryotic cells, was used as a technical positive control. (A) Representative immunofluorescent images of HeLa cells at �1,000 magnification. (B) Image J was
used to measure the mean fluorescent intensity of �-H2AX-positive cells from the digitally acquired images. (C) Percentages of total cells stained for �-H2AX
calculated from the immunofluorescent images. Data displayed in the bar graphs represent the mean and standard deviation of results from 3 experiments,
representing a total of 48 fields of view and approximately 300 cells for each treatment group. **, P � 0.01.
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molecular analysis did not permit species-level identification, all
Bacillus strains cultured from our breast cancer patients were of
the species B. cereus.

An epidemiological study has shown that women who drink
fermented milk products have a reduced risk of breast cancer de-
velopment, irrespective of multivariable risk factors (42). This
protection might be attributed to the health-promoting proper-
ties of the various lactic acid bacteria (LAB) present in fermented
products. Lactococccus and Streptococcus, two such bacteria that
were higher in healthy women than in breast cancer patients, ex-
hibit anticarcinogenic properties and may play a role in preven-
tion. Natural killer (NK) cells are vital in controlling tumor
growth, with epidemiological studies showing that low NK cell
activity (from peripheral blood mononuclear cells [PBMC]) is
associated with an increased incidence of breast cancer (43, 44).
Lactococcus lactis has been shown to activate murine splenic NK
cells, enhancing cellular immunity (45). While no studies have yet
been published comparing NK cell functionality in the breast be-
tween normal (i.e., healthy patients) and normal adjacent (i.e.,
breast cancer patients) tissues, it could be assumed, based on the
PBMC data, that NK functionality is also impaired in the breasts
of those with cancer. Lactococcus sp. present in the mammary
glands may modulate cellular immunity by maintaining the cyto-
toxic activity of resident NK cells (46), thus helping to prevent
cancer development. Streptococcus thermophilus, on the other
hand, protects better than any other LAB tested against DNA
damage caused by reactive oxygen species by producing anti-
oxidant metabolites that neutralize peroxide and superoxide
radicals (47).

Orally administered Lactobacillus species have been shown to
be protective in animal models of breast cancer (48). While total
numbers did not differ between healthy and diseased patients,
those with breast cancer may not have experienced the full anti-
carcinogenic benefits afforded by Lactobacillus due to the decrease
in Lactococcus and Streptococcus, as LAB have been shown to act in
synergy with each other (49).

Prevotella, which was more abundant in healthy women than
in breast cancer patients, produces the short-chain fatty acid
(SCFA) propionate, which, like other SCFA, has many beneficial
health effects in the gut, one of them being the ability to regulate
colorectal tumor growth (50). In both animal and human studies,
higher levels of Prevotella were observed in the stool of healthy
subjects than in the stool of those with CRC (10, 30). However, in
the oral cavity, patients with OSCC had higher levels of Prevotella
than did healthy controls; when Prevotella presence was used as a
diagnostic tool, the authors could predict 80% of the cancer cases
(32). The conflicting association of Prevotella with CRC and
OSCC may be due to the fact that metabolites function differently
at different body sites. While SCFA are anti-inflammatory in the
colon and associated with health (51), in the vagina, they are pro-
inflammatory and associated with bacterial vaginosis (52). What
role Prevotella and/or propionate may be playing in breast health
(or disease) remains to be determined.

It is interesting that the microbiome profile of normal adjacent
tissue from women with benign tumors was similar to that of
normal adjacent tissue from cancer patients, rather than normal
tissue from healthy women, and raises the question as to why these
women with benign tumors do not have cancer, if we believe that
there may be a link between bacteria and breast cancer. In women
with benign disease, DNA damage caused by bacteria may be re-

sponsible for enhanced cellular proliferation, leading to tumor
formation, similar to what may be occurring in cancer patients;
however, other factors that may promote transformation and ma-
lignancy of this tumor are reduced in these women compared to
those with cancer. One of these factors may be the increased se-
cretion of proangiogenic and/or inflammatory molecules from
immune and epithelial cells in women who have cancer. Another
possibility is that women with benign tumors have lower levels of
DNA-damaging bacteria than do those with cancerous tumors,
decreasing the probability of multiple oncogenic genes becoming
mutated. Further studies following healthy women and those with
benign tumors for development of breast cancer might shed more
light on which bacterial strains might drive cancer development.

While we have reported differential abundances of certain or-
ganisms between healthy and diseased states, in reality it is prob-
ably not a single organism driving disease progression or protec-
tion but an interplay of polymicrobial interactions. To get a better
understanding of the microbial influence on breast cancer, the
functionality of these microbes should be investigated. Further
studies examining bacterial metabolites and bacterially induced
host metabolites would provide vital information on the role of
bacteria in breast health.

Conclusion. This study has shown that bacterial profiles differ
in breast tissue of healthy subjects and normal adjacent tissue of
breast cancer patients. Some of the bacteria that were relatively
more abundant in breast cancer patients had the ability to induce
DNA double-stranded breaks. Further studies need to be done to
examine whether this DNA damage can lead to chromosomal ab-
errations and whether the differences in the bacterial profiles are a
cause or a consequence of the disease. This study raises important
questions as to the role of the breast microbiota in breast cancer
development or prevention and whether bacteria could be har-
nessed for interventions to help prevent disease onset.
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